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Abstract

This paper briefly reviews the state of the art in Fault Detection and Isolation (FDI), and describes a test-case for in-flight
fault diagnosis. The main concepts are recalled, the links between the approaches are indicated and the most promising
methods are highlighted. The nonlinear models of the system, its sensors and actuators are described in the second part of
the article, along with fault scenarios. Constraints restrict the approaches that are applicable on the test-case and suggest
quantitative indices that can be used to evaluate fault diagnosis strategies in an aeronautical context.
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1. INTRODUCTION

Reliability and safety of aeronautical systems have always been a major concern for aircraft manufacturers. There
is an absolute necessity to identify early unexpected changes in the system (referred as faults) before they lead to
a complete breakdown (failure). Fault Detection and Isolation (FDI) and Fault Tolerant Control (FTC) for aerial and
space vehicles have already been addressed in a large number of papers (see, e.g., [1][2]). FDI comprises fault
detection (“something is wrong”), fault isolation (“the fault pertains to this component”) and even fault identification
(“this is the nature of the fault”). Active FTC aims at designing a control law that will fulfill the required function while
taking advantage of FDI, whereas passive FTC pursues the same objective using robust control without FDI. This
paper will focus exclusively on FDI, leaving aside reconfiguration. Most often, on-line fault diagnosis is tackled via
hardware redundancy – multiple sensors or actuators with the same function. The major drawbacks of this approach,
however, are higher costs and lower autonomy because of the additional weight, volume and power required [2].
Two main groups of approaches attempt to circumvent these difficulties. The first one is analytical redundancy,
which exploits the relations between measured or estimated variables in order to detect possible dysfunctions of the
system. This set of methods is commonly called model-based, where model should be understood as a knowledge-
based dynamical model. The behavior of the system can indeed be modeled as a set of differential equations,
usually in state-space form. The second group of approaches is often referred to as model-free, although it actually
uses the redundancy and correlations of the data in a hidden manner. It exploits measurements, acquired in real
time or available in a previously constructed database, using a behavioral model of the signal. In what follows, we
shall keep with the classical terminology distinguishing model-based and model-free approaches.

Section 2 presents a brief, but eclectic, overview of the main FDI methods. The approaches are classified
according to the kind of knowledge they require. The underlying hypotheses and uncertainty modelling are also taken
into account in this classification. Model-free approaches are displayed first, followed by the model-based methods.
Finally, we show how fault isolation is performed independently of the class of method. Throughout Section 2, we
have attempted to gather methods coming from different fields in generic groups. Details are not given for lack of
space, but references are provided to complete the insight. We do not claim exhaustivity; for example discrete-event
simulation (including fault trees, petri nets...) is beyond the scope of this paper.

Section 3 describes the proposed aeronautical benchmark. First, the class of aerial systems considered along
with the hypotheses and knowledge available are detailed. The explicit model of the system, including its sensors
and actuators, is then presented. The generic set of devices composing the vehicle is considered as a given and
no hardware redundancy is allowed. The set of possible faults affecting the sensors and actuators is specified and



simulation results of normal and faulty flights are shown. Finally, the most promising approaches for this generic
case study are pointed out, and performance indices are proposed in accordance with robustness requirements.

2. FAULT DIAGNOSIS APPROACHES

2.1. Basic definitions

The main concepts in fault diagnosis are recalled here, to avoid ambiguity. Further standard definitions can be
found in [3]. A fault is an unpermitted deviation of at least one characteristic property or parameter of the system.
It may lead to a failure, which is a permanent interruption of the system ability to perform some required function.
The main goal of FDI is then to identify incipient faults as soon as possible so as to prevent failures. A fundamental
problem in this context is the achievement of a satisfactory trade-off between non-detection and false alarms.

Residuals are signals computed on the basis of measurements in operation. They should remain small as long
as there is no fault, and become sufficiently large to be noticeable whenever a fault occurs. Residuals are most often
involved in the model-based methods, but should also be considered within model-free approaches.

2.2. Model-free approaches

When no explicit dynamical model is available, the system knowledge boils down to real-time measurements,
possibly completed by process history. With such data, two main strategies could be adopted. In a sense, both aim
at interpolating the new measured point based on the available data. The first strategy is classification. It involves
building classes from the database either in a supervised way (i.e., with the help of an expert) or in an unsupervised
manner (i.e., collecting elements of the database that are close to one another). A classifier is then trained with
respect to these classes to perform the classification of the newly measured variables as representative of a healthy
or faulty behavior. The second strategy is regression. It builds a statistical model that uses the redundancy of the
process history in order to predict the values of the new variables and generate residuals by comparing predictions
to measured values.

2.2.1. Qualitative approaches: When no process history is available, the only exploitable information concerning
the system monitored is the empirical knowledge of experts, which can be used to build expert systems. An expert
system consists of a set of rules that aim to mimic human reasoning, by associating premises and conclusions to
determine the logical chain of events. A fault is then reported if a forbidden sequence of events is detected. The
major drawbacks of this approach are its lack of generality and its inability to handle situations that have not been
explicitly taken into account in the design of the knowledge base [4].

Another class of methods, close to the previous one, is known as qualitative trend analysis (QTA). Its purpose
is to decompose a measured signal into a sequence of known primitives (e.g ”stable”, ”increase” or ”decrease”).
This recognition can be achieved either by analyzing the sign of the successive derivatives and using them in a rule
base, or by matching patterns with a database containing samples of known primitives [5]. Both techniques imply
the cautious design of heuristic rules. Faults are identified in the same manner as with expert systems.

2.2.2. Early tendencies in pattern recognition for fault diagnosis: When a process history is available, diagnosis
can be viewed as a pattern recognition task where newly acquired measurements are to be classified in predeter-
mined modes. The main tasks to be achieved are precisely described in [6] and summarized in this section. The
prior knowledge is a database comprising d observations of the n variables. First, two off-line operations have to
be carried out. The data must be clustered into classes and a decision rule should be trained. M classes are thus
defined and each vector of the database is assigned to one of them. For diagnosis, the modes to be considered are
the healthy one and all of the possible faulty ones. Labeling can be performed by an expert, if available, or with an
algorithm like k-means clustering [7]. If the database contains only non-faulty measurements, another solution is to
perform one-class classification [8], although this will not make fault isolation practicable. Once the data have been
labeled, a decision rule must be chosen and trained so as to classify the vectors in the proper classes. Parametric
and non-parametric approaches are available for that purpose.

Parametric discrimination: If the probability density function of the observations is assumed fixed, it can be
estimated from the data (e.g., with a maximum-likelihood method under hypotheses on the law). If moreover a



prior probability is assigned to each class, then new measurement vectors can be classified using the Bayes rule.
When there is no information concerning prior probability density functions of the observations and classes, only
parametric discrimination by the mean of direct boundary computation is feasible. The simplest case is linear binary
classification, on which most methods are built. Considering two classes, its aim is to find a hyperplane that splits
the data into two parts with respect to the predefined labels. This separator is designed optimally according to some
predefined cost function; a norm should be chosen to achieve data fitting, along with a regularization term to avoid
overfitting. The solution is then obtained by minimizing this cost with, e.g., the Ho-Kashyap algorithm. For nonlinear
problems where no linear separator exists, more complex functions (quadratic, cubic...) could be used but involve the
tuning of a dangerously increasing set of parameters. A very popular solution to design separators for classification
(or approximators for regression) has been to resort to neural networks. Actually, the design difficulty moves from
choosing the parameters of the analytical separator to the selection of an activation function and the choice of the
structure of the network, i.e., the number of layers and the number of neurons composing each of them. Minimizing
the quadratic distance between the output of the network and the label of the class requires the tuning of the weights
of the neurons, usually with the well-known back-propagation algorithm. Note that the convergence of this gradient
algorithm to a global minimizer of the cost function is not guaranteed. These tools have been widely used in FDI for
a large panel of applications [9].

Non-parametric classification methods: If the design of a separator is intractable, a distance combined with a
voting scheme can complete classification. Considering the labeled data, a new point is classified in conformity with
its neighborhood. The best-known method is the k-nearest neighbor algorithm, which gives its value to the new point
according to the majority of the labels of the k-nearest points. Of course, a distance should be chosen to determine
which points are the “nearest”. A histogram or a grid could also replace the distance to analyze the neighborhood
influence on the point considered.

On-line classification is then carried out in conformity with the separation rule chosen. To take care of unexpected
situations, rejection (both in distance and ambiguity) may also be considered. Distance rejection means that if
the newly acquired measure is considered too far from the existing classes, then it is not taken into account.
Ambiguity rejection concerns the points that are too close to the border of the classes, alternative solutions being the
introduction of fuzzy borders or Bayesian priors. Rejected points may be used to add new classes to the classifier
or to redefine the classification rule on-line.

2.2.3. Advanced pattern recognition – Kernel machines: Two key notions are used in modern pattern recognition,
namely those of kernel and of sparsity. Kernel classifiers look for a function separating the classes. This function
is built using training data. The main difficulty then is to represent the link between the samples and particularly to
extract useful information from the large amount of redundant data. The kernel trick makes it possible to generalize
linear methods, such as those described in Section 2.2.2, by mapping the data into a high-dimensional feature
space. The output of a kernel machine could be expressed as ym(x) =

∑d
i=1 αi · k(x,xi) where x is the new

input point, the xi’s are training points, k(., .) is the kernel and theαi’s are weights to be tuned. The main advantage
of this formulation is that it provides an easily computable kernel function that expresses the distance between two
data points. There is also a need for sparsity as it would be computationally expensive to have significant weights
on all the samples while all the points are not relevant. This is accomplished through an appropriate design of the
cost function that will be minimized to find the weights αi of the kernel machine. Mathematical details concerning
statistical learning theory may be found in [10].

Vapnik’s Support Vector Machines (SVM) have popularized these concepts [11]. The goal of SVM is to find
a linear separator of the data in the higher-dimensional feature space. The linear separator is designed in or-
der to achieve structural risk minimization (SRM). It aims at avoiding overfitting, which is the main problem of
parametric discrimination approaches such as neural networks. The final function is expressed as a projection
onto support vectors. Another interesting approach is the use of Gaussian Processes (GP), which generalize
multivariate Gaussian distributions to infinite-dimensional spaces. Gaussian-process regression has been called
Kriging by the geostatistical community. The covariance of the GP plays the role of the kernel, and sparsity facilitates
computation for large-scale problems. These two methods have been shown to be closely related to other well-
known regularization techniques, such as ridge regression or least-square classification [12].



The use of the tools described in this section is only at its beginning in the FDI field, which is surprising considering
how straightforward it is to adapt these powerful new tools to the problems considered in Section 2.2.2. Very few
applications of kernel machines to diagnosis have been reported so far [8], but it seems a promising way to perform
or enhance fault detection. Moreover, the criteria used could be modified to perform regression. It then becomes
possible to use the same formalism to create a black-box model that can generate residuals by comparing its
outputs and the measurements on the system to detect the faults. Finally, it should be pointed out that the choice
of the kernel and cost function is crucial and far from trivial, and that adequacy to the data must be carefully checked.

2.2.4. Principal Component Analysis (PCA): PCA projects the training data onto the eigenvectors of the covari-
ance matrix and keeps only the most relevant ones, through a threshold on the eigenvalues, to achieve dimension
reduction. The selected eigenvectors are then used to build a linear time-invariant statistical model that can serve
to estimate the variables of the process in order to generate residuals. That could be seen as a kernel machine
too, since a linear covariance corresponds to a possible choice of kernel. A recursive form exists for dynamical
systems [13] and PCA can also be extended to the nonlinear case by the kernel-trick, as described previously [14].
An alternative method with similar extensions is Partial Least Squares (PLS) [5].

2.3. Model-based approaches
When the physics of the process is well known, it becomes possible to use an explicit knowledge-based dynamical

model. Fault detection then amounts to checking whether the behavior of the monitored process is inconsistent with
that of its model. This is done by exploiting the structure of the model and the existing input-output relationships.

2.3.1. Qualitative tools: If a model of the process is available but the confidence in its parameters and quantitative
outputs is very low, a first approach could be to derive a qualitative model. Qualitative equations are then used to
express the type of variation of the process variables. This qualitative physics has the same goal as the methods
outlined in paragraph 2.2.1, i.e., to predict the evolution of the process in order to detect abnormal behaviors [15].
These causal links could also be modeled under the form of a signed digraph (SDG) [16]. Although complex systems
cannot be efficiently supervised with these approaches, semi-qualitative methods may be of great help to monitor
uncertain systems [17].

2.3.2. Parameter monitoring: For faults that may affect the values of some characteristic constants of the system
itself, such as leaks entailing abnormal mass variations, parameter estimation techniques should be considered. The
nominal value (or a set of admissible values in a bounded-error context [18]) of the monitored parameter vector is
supposed known and FDI then boils down to estimating on-line the value of the parameters to generate residuals.
Parameter estimation for models that are linear in their parameters can be achieved with, e.g., the recursive least-
square algorithm, provided that the input signal is persistent. Nonlinear parameter estimation could be addressed
in the same way but the techniques involved may be computationally much more expensive and not guaranteed to
converge to an optimal solution.

When a system may suffer from abnormal oscillations or vibrations, diagnosis could be carried out by frequency
analysis. Parametric signal models can be used to estimate the main frequencies and estimate possible changes in
the system behavior [19].

2.3.3. State estimation: Estimating the state and output of the system makes it possible to create residuals by
comparing the reconstructed signals with their real values. State estimators may be classified according to how
they represent uncertainty. Considering linear systems first, Luenberger observers allow the reconstruction of the
state variables under deterministic hypotheses, while Kalman filtering achieves the same operation in a stochastic
context with assumptions on the distribution of the measurement noise and state perturbations. These now classical
methods have been widely used for a large panel of applications [3]. A very useful extension for fault detection is
the Unknown-Input Observer (UIO), which can be designed in deterministic and stochastic settings. The UIO aims
at performing state estimation with minimal influence of the unknown inputs (i.e., exogenous disturbances).

Nonlinear state estimation is often addressed by linearizing the model around an operating point or along a
trajectory in order to apply the previous techniques. This has given birth to the Extended Luenberger Observer



(ELO), the Extended Kalman Filter (EKF) and recently the Extended Unknown Input Observer (EUIO) [20]. These
approaches lead to relatively easy computation, however linearizing implies losing information.

Contrary to the previous extensions of the Kalman filter, the Unscented Kalman Filter (UKF) does not linearize
the model. This technique predicts the system behavior by using evaluations of the nonlinear model at a set of
points approximating a Gaussian distribution of the state vector [21]. Based on a similar idea, sequential Monte
Carlo methods such as Particle Filtering (PF) are a very promising approach to deal with nonlinearity. PF is now
commonly used for tackling complex fault detection issues [22].

Many observer structures using the nonlinear model without linearizing it have been proposed, from the sliding
mode observer [23] to nonlinear adaptive observers [24] and high-gain observers [25]. No general nonlinear struc-
ture can be defined and therefore tuning complexity is increasing. Recently a unifying theory of nonlinear observers
has emerged [26], proposing the solving of a partial differential equation as the design methodology. If such a
solution is reachable for aerospace applications, this could be an interesting framework to consider for observer-
based fault diagnosis.

The methods presented so far either do not use an explicit uncertainty representation or assume a statistical
distribution, most often Gaussian. An alternative approach is to use bounds on errors. This bounded-error approach
can be used for linear and nonlinear models. In nonlinear state estimation, for example, interval analysis can be
used to predict the evolution of the set of possible values for the state vector [27]. Part of the predicted set that
are inconsistent with measurements can then be eliminated. Fault detection can then be performed by checking
whether the resulting set is empty [28]. This uncertainty modelling is not specific to state estimation and can be
used in parameter estimation or in the context of decoupling methods (see Section 2.3.4).

To avoid heavy computations, multiple-model strategies are also being investigated. They assume that the
nonlinear model of the system can be approximated by interpolating between local linear models. This Takagi-
Sugeno representation may be obtained analytically or by system identification. It is then possible to build a set of
interpolating linear observers and achieve diagnosis operations [29].

To complete this overview, we would like to mention the very recent differential-algebra approach of [30], based
on fast state-derivative estimations.

2.3.4. Decoupling methods : The Fundamental Problem of Residual Generation (FPRG) [31] is the maximization
of sensitivity to faults while minimizing the influence of disturbances. Ideally, each generated residual should be
sensitive to one particular fault only. Most classical FDI methods do not take perturbations into account and therefore
do not address the FPRG. UIOs address the FPRG by considering the disturbances as unknown inputs, but can
only be applied for specific perturbations structures.

Parity relations eliminate unknown state variables from model equations so as to produce residuals that only
depend on the system inputs and outputs. This is done by exploiting the model structure and temporal redundancy
on a short horizon. The methodology was initially developed for linear systems but it has been extended to bilinear
and polynomial models (with the help of elimination theory for the latter). This method has also been applied to
systems with unknown parameters [32]. Links between parity space methods and observers have been investigated
in [33].

Polynomial approximation of nonlinear systems does not always allow the design of robust FDI filters. A non-
linear geometric approach has been proposed to deal with the FPRG for a larger class of nonlinear systems [31].
This method aims at finding a state and output coordinates transformation that leads to a new set of observable
decoupled residuals. The algorithm has been successfully applied to an aircraft nonlinear model [34].

The FPRG could also be addressed through the H∞ methodology. This multi-objective optimization approach
provides a residual filter that maximizes (according to the H∞ norm) the effect of the faults while minimizing some
measure of the influence of the disturbances. One of the difficulties lies in transforming the system into standard
form before applying the method [35].

2.4. Performing Fault Isolation and Residual analysis

If decoupling methods succeed in producing residuals that are sensitive to only one fault, fault isolation is directly
achieved. Using observer-based techniques, two schemes for fault isolation have been considered, namely the



dedicated observer scheme (DOS) and the generalized observer scheme (GOS). DOS is a bank of observers
sensitive to only one fault while GOS is composed of observers sensitive to all faults except one. If such a decoupling
is impossible, a fault-incidence matrix should be built. This Boolean table shows the influence of each fault on all the
residuals. For fault isolation to be possible, each fault should affect a different set of residuals. Note that structural
analysis could help a great deal to construct this incidence matrix [36].

When fault isolation has been shown to be possible, whatever the fault detection method employed, a residual
analysis has to be performed. A test of the statistical hypotheses should be carried out to distinguish faulty from
normal signal behavior. If a learning algorithm is considered, the test will determine whether the current operating
point is located in a healthy class or in a faulty one, with the help of the preceding measurements. For a residual
generated with a model-based approach, the test will identify a drift in the signal.

Direct fault diagnosis methods apply a fixed threshold as a detection test, but this ignores the previous values
of the signal and it is very sensitive to outliers. More sophisticated tests are generally defined to detect a change
in the mean of the signal. The Wald test (also called Sequential Probability Ratio Test – SPRT ) and the Page-
Hinkley test (also known as the cumulative sum algorithm – CUSUM), based on the maximum likelihood criterion,
are most commonly encountered in residual processing. Remarkable on-line extensions of these basic tests have
been developed [19].

3. AERONAUTICAL BENCHMARK

3.1. Hypotheses and airframe dynamics

Test cases for fault diagnosis have already been defined for industrial applications (DAMADICS project [37]) or
for specific problems affecting commercial planes such as oscillatory faults [38]. The aeronautical benchmark we
aim at defining is centered on an autonomous guided aerial vehicle with typical sensors and actuating devices.

In this paper, the proposed case study involves a six-degree-of-freedom surface-to-air missile. Actuating is
performed using usual flight control surfaces and propulsion regulation (either turboprop or ramjet). The main
sensor is an Inertial Measurement Unit (IMU), comprising gyrometers and accelerometers. It could possibly be
combined with a GPS, however this case is not considered here. These standard components are preset and
there is no hardware redundancy. We consider a missile with body-of-revolution symmetry, thus the inertia matrix
is I = diag(a, b, b). The position of the center of gravity on the missile axis is marked by xbG , [ϕ, θ, ψ] are
the Euler angles, [vbx, vby, vbz] is the speed in body coordinates, [p, q, r] is the angular velocity, [x, y, z] is the
position in the inertial frame,Q = 1

2
·ρ ·(v2

bx +v2
by +v2

bz) is the dynamic pressure,m is the aircraft mass, sref and
lref are characteristic dimensions. The aerodynamic coefficients c(.) are piecewise constant, except czb, which is a
function of the Mach number and the angle of attack. With this notation, the dynamics is described by the following
state equations.

 ẋ

ẏ

ż

 =

 cosψ cos θ − sinψ cosϕ+ cosψ sin θ sinϕ sinψ sinϕ+ cosψsinθ cosϕ
sinψ cos θ cosψ cosϕ+ sinψ sin θ sinϕ − cosψ sinϕ+ sinψ sin θ cosϕ
− sin θ cos θ sinϕ cos θ cosϕ

 ·
 vbx

vby

vbz


˙vbx = r · vby − q · vbz − sin θ · g + 1

m · [−Q · sref · cx + fx]

˙vby = p · vbz − r · vbx + cos θ · sinϕ · g + 1
m ·
[
−Q · sref · czb · vby√

v2by+v2bz

]
˙vbz = q · vbx − p · vby + cos θ · cosϕ · g + 1

m ·
[
−Q · sref · czb · vbz√

v2by+v2bz

]
ṗ = 1

a ·Q · sref · lref · clδl
· δl

q̇ = 1
b ·
[
(b− a) · p · r +Q · sref · lref · δm −Q · sref · czb · vbz√

v2by+v2bz

· (xbG − xbGref)
]

ṙ = 1
b ·
[
(a− b) · p · q +Q · sref · lref · δn +Q · sref · czb · vby√

v2by+v2bz

· (xbG − xbGref)
]

ϕ̇ = p+ (q sinϕ+ r cosϕ) tan θ
θ̇ = q cosϕ− r sinϕ
ψ̇ = (q sinϕ+ r cosϕ) 1

cos θ

The state vector is x = [x, y, z, vbx, vby, vbz, p, q, r, ϕ, θ, ψ]T, the input vector is u = [δl, δm, δn, fx]
T

where the δ(.)’s are the deflection angles corresponding to the three axes and fx is the propulsion rate. The IMU/INS



system provides a measure of the entire state vector. IMU measurements are subject to errors such as biases,
scale factors and noise. Considering, for example, a one-axis sensor δωp measuring the roll rate p, the measure
is expressed as: δωp = kp · p + bp + G(0, σp) where kp is the scale factor, bp the bias and σp the standard
deviation of a zero-mean Gaussian white noise. These three parameters (for each sensor) are characteristic of the
IMU and should fall within a set of values provided by the manufacturer.

The aircraft model belongs to the general class of nonlinear control-affine systems, which could be written as:{
ẋ = f(x) + G(x) · u + H ·w
y = C · x + v

where f , G, H and C are smooth vector field and matrices with appropriate dimensions, and w and v are the
perturbation vector and measurement noise.

The aircraft has four flight control surfaces in a symmetric scheme with two elevators (δm1, δm2) and two rudders
(δn1, δn2). Servomotors are modeled as second-order systems saturated in position and velocity. The equivalent
deflection angles are computed as:

δl = 1
4
· (−δm1 + δm2 − δn1 + δn2)

δm = 1
2
· (δm1 + δm2)

δn = 1
2
· (δn1 + δn2)

These modelling and choice of sensors and actuators are representative of a large panel of aerospace vehicles
[39].

3.2. Flight scenario

The surface-to-air missile aims at intercepting a target that is following a given path at a constant altitude. Taking
off from the ground, the missile is guided toward its goal via a proportional navigation guidance law. A ground-
based radar provides the missile-target line-of-sight rate to compute the guidance orders. Examples of target and
interceptor trajectories are shown in Figure 1. The corresponding initial conditions are in Table I.

Initial conditions Speed Position Departure time

Target 200 m/s
x = 0m
y = 0 m

z = 3000 m
0 s

Missile 600 m/s
x = −7000 m
y = −5000 m

z = 0m
5 s

Table I
INITIAL CONDITIONS

3.3. Faults

A mathematical model of actuator faults should be precisely defined. As in [37] and [39], we express the control
input as u = σf · kf · uc + (1− σf ) · ū where uc is the control input that should be applied if no fault disturbed
the system. The other parameters, depending on the type of fault taking place, are specified as follows:

∀t > tfault,


No fault : σf = 1, kf = 1
Loss of effectiveness : σf = 1, 0 < kf < 1

Freezing : σf = 0, kf = 1, ū =

{
u(tfault): Lock− in− place

uim or uiM (end stops) : hard− over

Most often in FDI applications, sensor faults are expressed as additive biases on the measurements. Considering
the form of the measurement equation, as explained in Section 3.1, it seems appropriate to consider faults that
statistically affect the biases, scale factors or noise standard deviations of the sensor model. This actually represents
an awry IMU and is more realistic than a bias appearing abruptly. Based on the possible faults influencing the



components that have been defined, Table II illustrates faults that can be applied on the case study. Trajectories
corresponding to Fault 2 (actuator fault) and to Fault 3 (sensor fault) are plotted in Figure 1.

Component affected Fault Interpretation Tag

Propulsion 50% Loss of effectiveness air intake problem 1
Rudder Lock-in-place power supply problem 2

z-accelerometer Bias out of bounds defective IMU 3
p-gyrometer Scale factor out of bounds defective IMU 4

Table II
FAULTS CONSIDERED

Figure 1. Target, healthy and faulty missile trajectories

3.4. Methods to be investigated and quantitative performance indices

As seen in Section 2, reliability on the knowledge about the system is a major criterion for method selection. The
model described in Section 3.1 has been validated by previous works in flight mechanics. It represents the behavior
of the vehicle satisfactory for given speed and altitude conditions. In actual flight conditions its inner parameters
are inaccurate, especially aerodynamic coefficients whose in-flight variations are not well known. This suggests that
modern pattern recognition approaches could be of great help to enhance diagnosis robustness to these sources
of uncertainty. Nevertheless, these techniques cannot be used alone because no record is available before the
mission, and prior knowledge on the system should not be ignored. An interesting approach would be to assist a
model-based algorithm with a model-free one, based on in-flight measurements. A line of inquiry may be given by a
semi-parametric kernel machine taking into account the influences of both model and measurements to regularize
the estimation.

The highly nonlinear dynamics governing the missile is limiting the range of methods using an explicit knowledge-
based dynamical model. Indeed, linearization or polynomial approximation would only add more uncertainty to



an already inaccurate model. Therefore, we tend to favor particle filtering and nonlinear geometric decoupling as
the analytical methods to be considered. Nonlinear observers and multiple model techniques are also interesting
contenders, if applicable. The assumption of bounded errors is an attractive way to handle uncertainty, and the
aforementioned methods could be adapted in this context.

It must be kept in mind that the missile is controlled by a closed-loop guidance algorithm. This control scheme
may lessen the impact of failing components, by modifying the fault dynamics. This may be taken into account in the
design of fault detection methods that will test consistency between computed control inputs (i.e., controller outputs)
and measured system outputs. It is even possible to design control inputs in such a way as to facilitate FDI; this is
known as active diagnosis [40].

Objective evaluation of all these methods is necessary in order to build an efficient aircraft FDI methodology.
Method-indepedent performance indices must be defined to compare them. These indices should reflect the relia-
bility of the decision rules, as it is a major concern in fault diagnosis. False-alarm and non-detection rates along with
their relative amplitude provide such information. It is also essential that faults are detected as quickly as possible
to allow the required safety measures to be taken. This is measured by the detection delay. See [37] for precise
definitions of a number of performance indices, including those mentioned above.

4. CONCLUSIONS

A survey of the main fault diagnosis approaches has been conducted in this paper. A classification according to
the type of knowledge available has been proposed, and the links between apparently dissimilar techniques coming
from different communities have been emphasized. We defined a test-case for in-flight FDI, based on an interceptor
missile with a predetermined set of sensors and actuators with no hardware redundancy. The nonlinear models of
the aircraft, its components and the faults affecting them were described in detail. Finally, methods to be further
investigated along with the performance criteria to compare them were set forth.
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